2018 Davies JCMoskowitz SMBrown CHorsley AMall MAMcKone EFPlant BJPrais DRamsey BWTaylor-Cousar JLTullis EUluer AMcKee CMRobertson SShilling RASimard CVan Goor FWaltz DXuan FYoung TRowe SMVX16-659-101 Study Group.VX-659-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles.N Engl J Med. 2018 Oct 25;379(17):1599-1611. doi: 10.1056/NEJMoa1807119. Epub  2018 Oct 18.  [Pubmed]

          Jane Davies

The next-generation cystic fibrosis transmembrane conductance regulator (CFTR) corrector VX-659, in triple combination with tezacaftor and ivacaftor (VX-659-tezacaftor-ivacaftor), was developed to restore the function of Phe508del CFTR protein in patients with cystic fibrosis.The effects of VX-659-tezacaftor-ivacaftor on the processing, trafficking, and function of Phe508del CFTR protein were investigated using human bronchial epithelial cells. A range of oral VX-659-tezacaftor-ivacaftor doses in triple combination were then evaluated in randomized, controlled, double-blind, multicenter trials involving patients with cystic fibrosis who were heterozygous for the Phe508del CFTR mutation and a minimal-function CFTR mutation (Phe508del-MF genotypes) or homozygous for the Phe508del CFTR mutation (Phe508del-Phe508del genotype). The primary end points were safety and the absolute change from baseline in the percentage of predicted forced expiratory volume in 1 second (FEV1).

RESULTS:(Trial numbers NCT03224351 and NCT03029455)  VX-659-tezacaftor-ivacaftor significantly improved the processing and trafficking of Phe508del CFTR protein as well as chloride transport in vitro. In patients, VX-659-tezacaftor-ivacaftor had an acceptable safety and side-effect profile. Most adverse events were mild or moderate. VX-659-tezacaftor-ivacaftor resulted in significant mean increases in the percentage of predicted FEV1 through day 29 (P<0.001) of up to 13.3 points in patients with Phe508del-MF genotypes; in patients with the Phe508del-Phe508del genotype already receiving tezacaftor-ivacaftor, adding VX-659 resulted in a further 9.7-point increase in the percentage of predicted FEV1. The sweat chloride concentrations and scores on the respiratory domain of the Cystic Fibrosis Questionnaire-Revised improved in both patient populations.

The authors concluded robust in vitro activity of VX-659-tezacaftor-ivacaftor targeting Phe508del CFTR protein translated into improvements for patients with Phe508del-MF or Phe508del-Phe508del genotypes. VX-659 triple-combination regimens have the potential to treat the underlying cause of disease in approximately 90% of patients with cystic fibrosis.

Elizabeth Baker William T HarrisSteven M RoweSarah B RutlandGabriela R Oates Tobacco smoke exposure limits the therapeutic benefit of tezacaftor/ivacaftor in pediatric patients with cystic fibrosis.  J Cyst Fibros  2020 Oct 3;S1569-1993(20)30870-5.doi: 10.1016/j.jcf.2020.09.011.Online ahead of print.[Pubmed]

   Elizabeth Baker

Objectives: Tobacco smoke exposure reduces CFTR functional expression in vitro and contributes to acquired CFTR dysfunction. We investigated whether it also inhibits the clinical benefit of CFTR modulators, focusing on tezacaftor/ivacaftor, approved in February 2018 for individuals with CF age ≥12 years.
Methods: A retrospective longitudinal analysis of encounter-based data from the CF Foundation Patient Registry (2016-2018) compared the slope of change in lung function (GLI FEV1% predicted) before and after tezacaftor/ivacaftor initiation in smoke-exposed vs unexposed age-eligible pediatric patients. Tobacco smoke exposure (Ever/Never) was determined from caregiver self-report. Statistical analyses used hierarchical linear mixed modeling and fixed effects regression modeling.
Results: The sample included 6,653 individuals with a total of 105,539 person-period observations. Tezacaftor/ivacaftor was prescribed to 19% (1,251) of individuals, mean age 17 years, mean baseline ppFEV1 83%, 28% smoke-exposed. Tezacaftor/ivacaftor users who were smoke-exposed had a lower baseline ppFEV1 and experienced a greater lung function decline. Over two years, the difference in ppFEV1 by smoke exposure among tezacaftor/ivacaftor users increased by 1.2% (7.6% to 8.8%, p<0.001). In both mixed effects and fixed effects regression models, tezacaftor/ivacaftor use was associated with improved ppFEV1 among unexposed individuals (1.2% and 1.7%, respectively; p<0.001 for both) but provided no benefit among smoke-exposed counterparts (0.3%, p = 0.5 and 0.6%, p = 0.07, respectively).

Conclusion: Tobacco smoke exposure nullifies the therapeutic benefit of tezacaftor/ivacaftor among individuals with CF aged 12-20 years old. To maximize the therapeutic opportunity of CFTR modulators, every effort must be taken to eliminate smoke exposure in CF.

Dr Elizabeth Baker is in the department of sociology at University of Alabama at Birmingham, Birmingham, AL, USA